TISSUE ENGINEERING OF BOVINE PERICARDIAL TISSUE IN THE CIRCULATORY SYSTEM OF A YOUNG OVINE MODEL: COMMERCIAL VERSUS IN-HOUSE DECELLULARIZATION

Botes L¹, <u>van den Heever JJ</u>², Laker L², Bester D², Dohmen PM^{2&3}, Smit FE²

¹Dept of Health Sciences, Central University of Technology, Bloemfontein, South Africa ²Dept of Cardiothoracic Surgery, University of the Free State, Bloemfontein, South Africa ³Department of Cardiovascular Surgery, Rostock University, Germany

UNIVERSITY OF THE FREE STATE UNIVERSITEIT VAN DIE VRYSTAAT YUNIVESITHI YA FREISTATA

Introduction

Biological substitution material in reconstructive surgery

- Allografts/Homografts Valves & Vasculature
- Xenografts Bovine Pericardium

General Requirements

- Versatility and Durability
- Biocompatibility
- Recellularization potential

Frequent complications

- Restenosis
- Pseudoaneurysm formations
- Calcification and fibrosis
- Infections
- Tissue engineering
- Decellularization to minimize immune response

Aim of the Study

Compare the Biological Interaction and Tissue Integrity of

- a Commercially available Bovine Pericardial patch (Glycar)
- In-house **Decellularized** Bovine Pericardium
- In-house Decellularized + Fixed & Capped Bovine Pericardium

in the circulatory system of young sheep

Methodology

Decellularization included cycles of:

Hyper- and hypotonic solutions, Detergents, Washings, and Sterilization and Storage (in A/B)

Tissue in Group 3 were additionally fixed with Glutaraldehyde(GA), capped with Propylene glycol and stored in Propylene oxide

Results (Pre-implantation) - DAPI

- Unfixed decellularized pericardial tissue does not appear inferior to other commercial products regarding mechanical properties after implantation in the circulatory system of young sheep.
- Decrease in YM of explanted tissues indicated that the tissue became more pliable.
- Uniform host cell ingrowth creates the potential for tissue regeneration, growth potential and reduction in calcification and early degeneration.
- Elevated calcium levels in explants from group 2&3 might be attributed to presence of intracellular calcium in host cell ingrowth.

Thank You Dankie

T: 051 401 9111 info@ufs.ac.za www.ufs.ac.za

Copyright reserved Kopiereg voorbehou

 \bigcirc

UNIVERSITY OF THE FREE STATE UNIVERSITEIT VAN DIE VRYSTAAT YUNIVESITHI YA FREISTATA

Results (180 days explantation) – TS & YM

							Glycar [®] (n=6)			Decellularized, fixed and			
Variable	Glycar [®] (n=6)			Dece	Decellularized (n=6)			(Median \pm SD)		capped (n=6)			
	(Median \pm SD)			(Median \pm SD)		Variable				(N	1edian ± SD)	
	Baseline	Explant (Pu)	Baseline vs. Explant	Baseline	Explant (Pu)	Baseline vs. Explant		Baseline	Explant (Pu)	Baseline vs. Explant	Baseline	Explant (Pu)	Baseline vs. Explant
YM (MPa)	114.50±4 0.41	19.58±1 7.18	p=0.0027 *	16.69±9.8 7 p=0.0001*	9.81±3.55 p=0.0604	p=0.222 8	YM (MPa)	114.50±40 .41	19.58±1 7.18	p=0.0027*	39.88±28. 46 p=0.0150*	10.01±1 1.41 0.1442	p=0.012 1*
TS (MPa)	23.02±4.7 2	6.02±0.9 6	p=0.0004 *	15.02±3.2 5 p=0.0238 *	3.60±1.28 p=0.0144*	p=0.000 4*	TS (MPa)	23.02±4.7 2	6.02±0.9 6	p=0.0004*	9.91±2.53 p=0.0001*	5.30±1.4 0 p=0.256 7	p=0.105 1

*- Significant (p<0.05)(SD = Standard Deviation; Pu = Pulmonary; YM = Youngs modulus; TS = tensile strength)

*- Significant (p<0.05)(SD = Standard Deviation; Pu = Pulmonary; YM = Youngs modulus; TS = tensile strength)

Results (180 days explantation) – Ca++

Table 3.2	Quantitative calcium analysis of baseline and explanted aortic and pulmonary					
pericardial patches: Glycar [®] and Decellularized groups						

		Gl	Decellularized (n=6)					
Variable		(M	(Median \pm SD)					
	Baseline	Explant (Ao)	Explant (Pu)	Baseline vs. Explant	Baseline	Explant (Ao)	Explant (Pu)	Baseline vs. Explant
Ca ⁺⁺	1 71 1 10	1.04±12.74	1,12±0.41	-	0.24±0.16	6.26±6,17	1,63±7,60	
Ca	1./1±1.12				p=0.3757	p=0.0074*	p=0.0067*	-
Baseline vs.								0 0000*
explant (Ao)	-	-	-	p=0.2289	-	-	-	p=0.0003*
Baseline vs.				0.4576				0.0045*
explant (Pu)	-	-	-	p=0.4576	-	-	-	p=0.0015*

*- Significant (p<0.05)(SD = Standard Deviation; Pu = Pulmonary; Ca = Calcium)

Table 5.2	Quantitative calcium analysis of baseline and explanted aortic and pulmonary pericardial
patches: Glyca	ar [®] and decellularized, fixed and capped groups

		Glycar	® (n=6)		Decellularized, fixed and capped (n=6)				
Variable		(Media	n ± SD)		(Median \pm SD)				
	Baseline	Explant (Ao)	Explant (Pu)	Baseline vs. Explant	Baseline	Explant (Ao)	Explant (Pu)	Baseline vs. Explant	
Ca++	1.71±1.12	1.04±12.74	1,12±0.41	-	0.24±0.07	2.05 ±15.76	3.53 ±3.86	-	
Baseline vs. ex-plant (Ao)	-	-	-	p=0.2289	-	-	-	p=0.0020*	
Baseline vs. ex-plant (Pu)	-	-	-	p=0.4576	-	-	-	p=0.0007*	