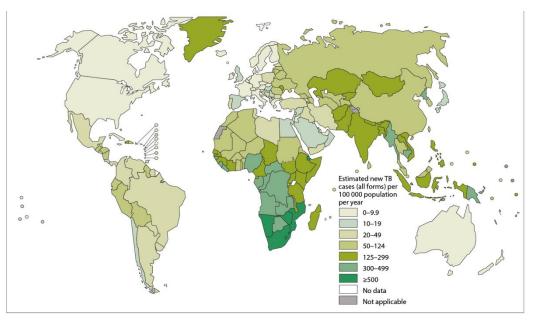
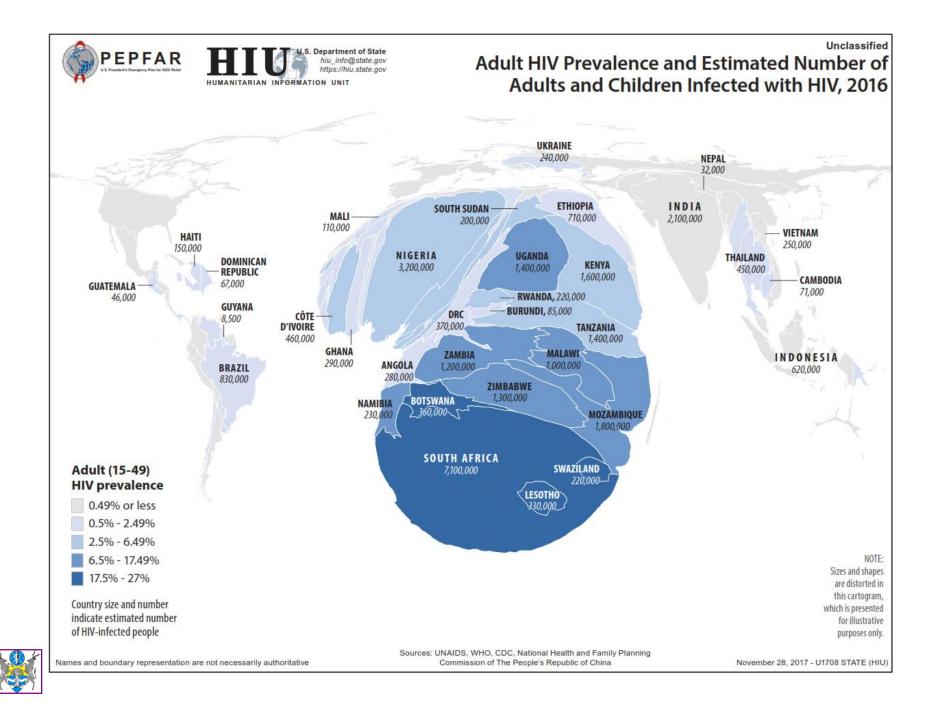
Spinal TB & Cortical bone allograft use

UN Fred. Ukunda MM. Lukhele



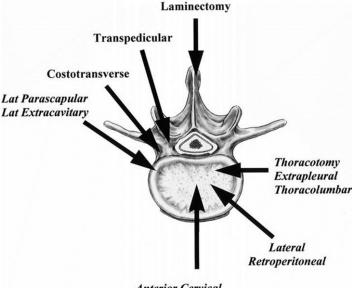

WHO Global Tuberculosis report 2014

 Tuberculosis (TB) endemic

- 70% of adults with TB are HIV (+)
- In HIV (+) patients TB is skeletal in 60% (3-5%)

M. tuberculosis

- "Acid-fast bacillus", strict aerobe and strongly dependent on oxygen tension
- Lungs most commonly infected
- Musculoskeletal system
 - Extrapulmonary manifestations
 commonly **Spine** 2 adjacents ve
 - Bone destruction (spinal defect).
 - Deformity (kyphosis).
 - Paraplegia



- 1950's Treatment was primarily supportive dismal neurological, functional and cosmetic outcomes
- The contemporary development of Streptomycin (effective ATB drug), Imaging modalities, Anesthesia, Operative techniques and spinal instrumentation
- Improvements in the diagnosis, management and outcome of spinal TB

Treatment

- Medical therapy mainstay MRC reports
 - 9-12 months
 - DOTs
- Hodgson (1956) popularized Gold standard Anterior surgery – "Hong Kong" Procedure
 - Challenges
 - Approach (adhesions, diaphragm, ureter)
 - Loss of correction
 - -Graft type (rib, iliac crest)
 - Instrumentation

Anterior Cervical Transmanubrial Transsternal Ant Trans/Retroperitoneal

Alternative - Titanium mesh

Alternative - Allograft

- Albee F. reported independently on Transplantation of a portion of the tibia into spine. So is Hibbs R. Pott's disease in early 1900s
- Cloward RD 1952 reported on use of bank bone in lumbar spine surgery
- Recent advances in bone procurement, sterilization, preparation and storage – Renew interest

Obvious criticism of structural allografts

• Human tissue

- Structural fresh frozen allografts preservation of structural integrity – potential risk
 - Disease and infection transmission (Virus risk is negligible 1 in 1 million)
 - Graft versus host reaction

Benefits

- Structural bone allograft has the advantage of potential for biologic fusion at graft—host interface
- Purported benefits
 - Immediate restoration of anterior column support
 - Donor site morbidity elimination
 - Decrease surgical time and blood loss
 - Solid biologic fusion

Summary of published studies on thoracolumbar tuberculous spondylitis involving treatment only using anterior surgery*

Authors & Year	No. of Cases (affected vertebrae)	FU (mos)	Type of Graft (no.)	Region (no. of cases)	Preop	Postop	Loss of Correction (°)	Final Correction
Korkusuz et al., 1997	119 (1 level)	90	iliac & costal autograft	total (185)	16.2	7.1	12.2 (min in 5 cases	
	55 (2 levels)			cervical (11)			treated w/ addition-	
	11 (. 2 levels)			thoracic (84) thoracolumbar (50)			al internal fixation	
				lumbar (40)				
Govender & Parbhoo,	22 (1 or 2 levels)	77	fresh frozen femoral allograft		54	22	unknown	42%
1999	19 (. 2 levels)							
Yilmaz et al., 1999	8 (1 level) 14 (2 levels)	29	iliac & costal autograft (28) fibular allograft (10)	total (38) thoracic (10)	59 (involvement of 1 or 2 levels)	range 10-28	max loss of 3° in 16 patients	64% (involvement of 1 or 2 levels)
	10 (3 levels)			thoracolumbar (22)	52 (involvement of	range 0–30		81% (involvement of
	4 (2 levels)			lumbar (6)	3 or 4 levels)			3 or 4 levels)
								correction was main- tained in 21 patients
Benli et al., 2003	23 (1 level)	51	iliac & costal autograft	total (63)	23.4	5.4	1.1	74.2%
	39 (2 levels)			thoracic (25)	22.6		1.2	69.8%
	1 (3 levels)			thoracolumbar (21)	24.0		0.9	81.2%
				lumbar (17)	23.5		1.4	72.4%
Ozdemir et al., 2003†	9 (2 levels) 19 (3 levels)	40	fibular allograft: single-graft in 19 patients; double-graft	. ,	32	6	3	60.3%
				lumbar (3)				
Dai et al., 2005	6 (1 level)	40	iliac & costal autograft	total (39)	13.5	21.9	no significant loss	
	2 (skipped lesion)		6	cervical (3)	12.6	20.6	of deformity	
	31 (2 levels)			thoracic (8)	16.4	2.8	correction	
				thoracolumbar (16)	16.2	0.8		
				lumbar (12)	8.5	29.3		
present study	22 (2 levels)	84	tibial allograft	total (22)	19	3	2	74%
				thoracic (13)	21	4	3	
				thoracolumbar (5)	29	5	2	
				lumbar (4)	8	21	0	

Exceptionally high rate of fusion

- Primarily axial loading in line with compressive trabeculae of allograft
- Intimate contact at host-allograft interface (cortices and medullary canal)
- Micromotion at host- allograft junction.
- Allograft construct packed with autograft (local osteoinductive growth factors).
- Rigidity of adjunct fixation

Infection!!

• No infection involving allograft even in infected host (vertebral osteomyelitis).

Govender and Parbhoo

- reported no graft rejections and sepsis in a large series of 47 children with spinal TB treated with fresh-frozen allografts
- 100% arthrodesis with evidence of cross-trabeculation at 6 months and remodeling at 30 months
- Dietze et al reported similar findings with the use of allografts in patients with spinal instability caused by infection

Govender et al

- The early incorporation of allografts in children:
 - Increased osteogenic potential
 - Increased surface contact area between the allograft and adjacent host vertebral body
 - Graft placement under compression improved stability and early axial loading

SPINE

The posterior-only surgical approach in the treatment of tuberculosis of the spine

OUTCOMES USING CORTICAL BONE ALLOGRAFTS

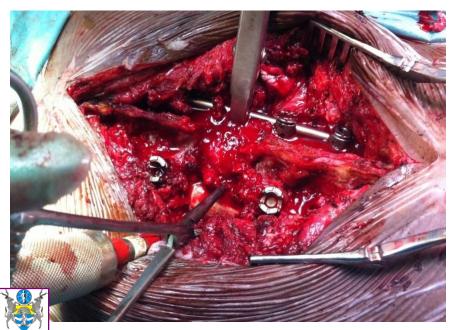
Bone Joint J 2018;100-B:1208–13 U. N. F. Ukunda, M. M. Lukhele

Background

- TB spine results in
 - Destruction of anterior vertebral column
 - Deformity
 - Neurological fall out
- Medical therapy MRC reports

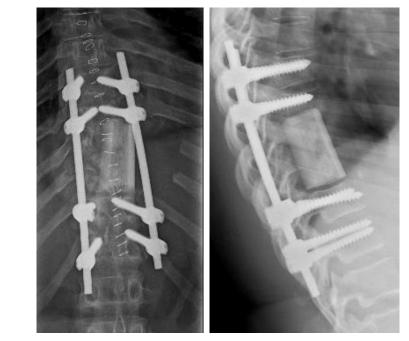
- Hodgson(1956) popularized Gold standard Anterior surgery
- Challenges
 Approach Adhesions Diaphragm Ureter
 Loss of correction Type of graft (Rib) Instrumentation

Background (2)


Suk et al.(2002 & 2005)

- One stage Posterior surgery
- Reduced operative time and complications
- Significant Sagittal correction

- In SA, the use of Allograft (Anterior approach) effective *Govender and Riemer*
- No results of posterior only approach using allograft in the literature
- Unit experience with approach
- Ethical and administrative approval obtained


S

U

g

е

V

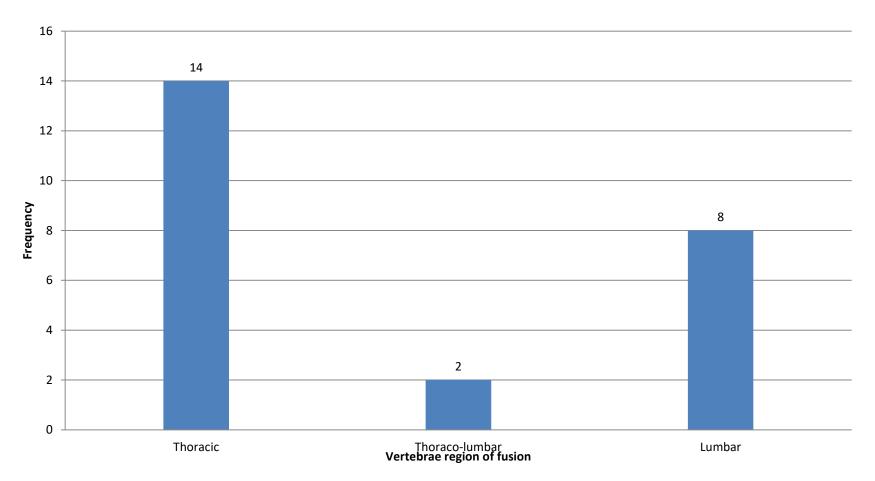
<u>Aim</u>

- The aim was to report the outcome of single-stage posterior surgery using bone allografts
- The secondary aim was to look at graft incorporation, neurological recovery and Oswestry Disability Index (ODI)

Patients and Methods

- 24 patients with Thoracolumbar spine TB underwent between 2008 and 2015.
 - Single-stage posterior spinal surgery
 - Anterior column reconstruction using cortical bone allograft, and
 - Posterior instrumentation
 - A unilateral approach for 21 with active TB, and
 A bilateral approach with decompression and closing-opening wedge osteotomy for 3 patients with healed TB

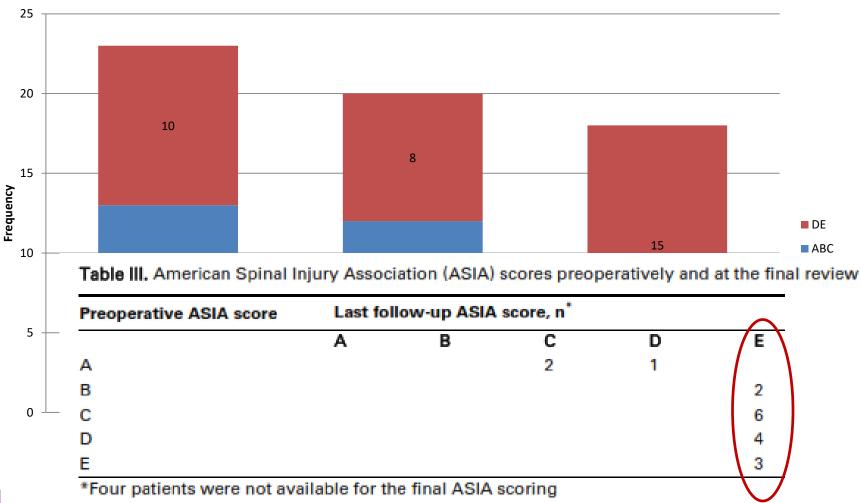
Characteristics of the patients


Table I. Characteristics of the patients

Variable	HIV-negative (n = 8)	HIV-positive (n = 16)	Total (n = 24)
Median age, yrs (IQR)	35.1 (21 to 49.5)	32 (29 to 37.5)	32 (27.5 to 41.5)
Gender, n (%)			
Male	2 (25)	5 (<i>31.3</i>)	7 (29.2)
Female	6 (75)	11 (68.8)	17 (70.8)
Spine region affected, n (%)			
Thoracic	4 (50)	10 (62.5)	14 (58.3)
Thoracolumbar	1 (12.5)	1 (6.3)	2 (8.3)
Lumbar	3 (37.5)	5 (<i>31.3</i>)	8 (<i>33.3</i>)
Median preoperative kyphosis (IQR)	34 (0 to 15)	30 (24 to 55)	30 (24.5 to 55)

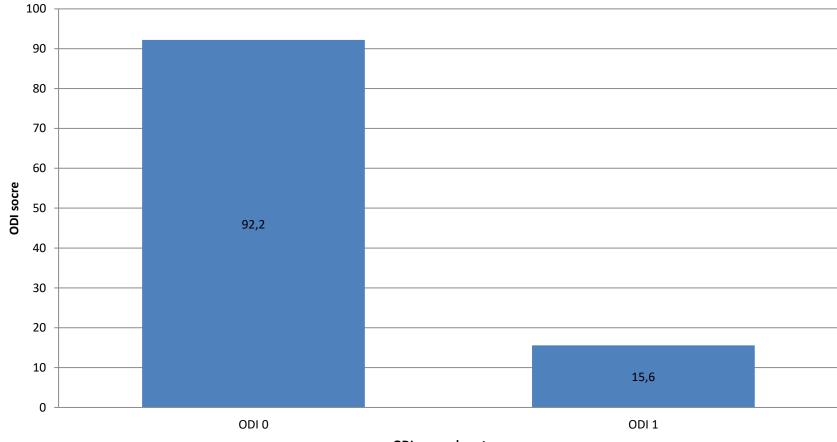
IQR, interquartile range

Affected spine region

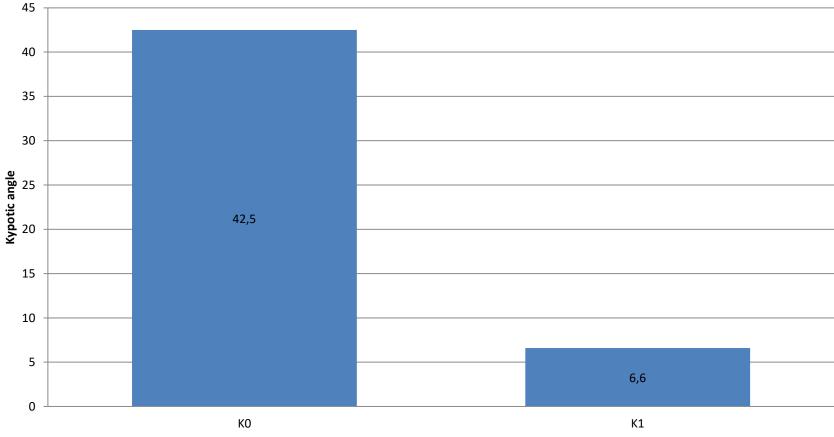

Surgical procedures

280 (230 to 315)
5 (3 to 6)
6 (26.1)
17 (<i>73.9</i>)
700 (350 to 900)
1 (1 to 2)
11.5 (9 to 21)
1.25 (1 to 1.75)

IQR, interquartile range



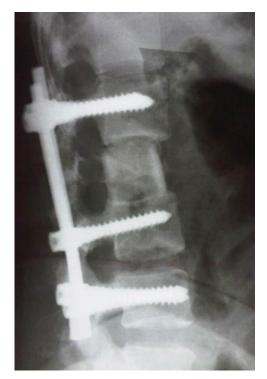
Neurological outcome: Pre-op and Post-op


ODI Pre and Post-op outcome

ODI pre and post op

Kyphosis – Pre and Post-op

Kyphotic angle measurement

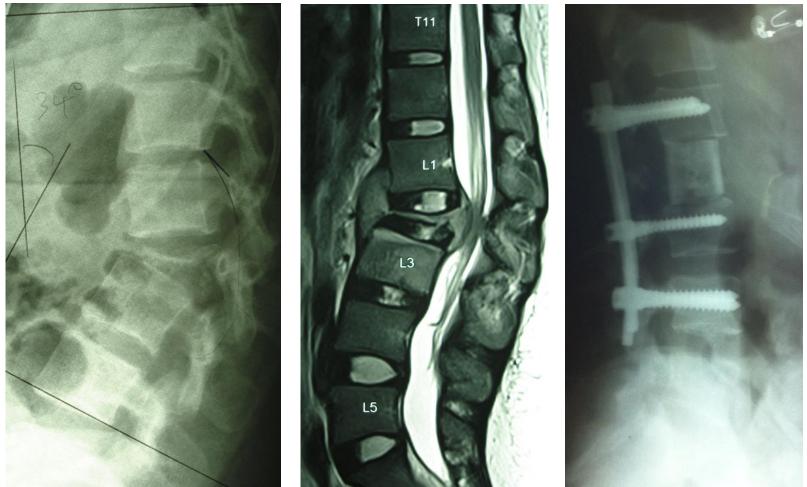

Fusion (12)

• X-rays:

➢ Grade 1 fusion (12)

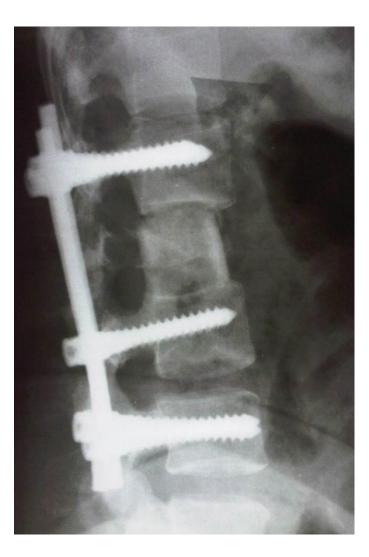
Grade 4 Loss Kyphosis correction and displaced graft (1) – Revision Bridwell et al

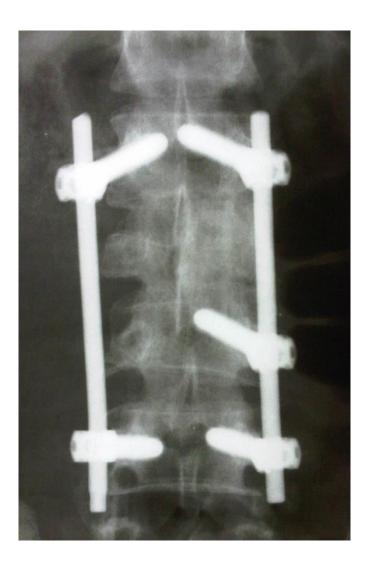
- CT scan:
 - ➢ Grade 1fusion (complete) (8)
 - ➢ Grade 2 fusion (partial) (2)
 - ➢ Grade 4 Loss of fusion (1) Tan GH et al



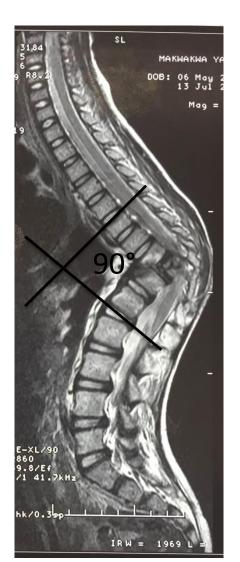
Complications

Complications	HIV -	HIV +	Total
Frankel B immediately post op	1	2	3
Chest infection	1	1	1
Death	-	2	2
Loss of correction – no fusion	-	1	1
Bleeding	-	1	1




22 yrs. Female HIV (-) Back pain & deformity and ASIA D

2 yrs Follow up: No back pain ASIA E



10 yrs. Male HIV (+) CD4: 682 and

ASIA E

14 yrs

Conclusion

 The posterior-only approach using cortical allografts for anterior column reconstruction achieved good clinical and radiological outcomes.

• Differentiation should be made between flexible (active) and rigid (healed) TB spine.

