

Depletion therapies in late period antibody-mediated rejection

<u>Malcolm Davies^{1,2}</u>, Graham Paget^{1,3}

¹University of the Witwatersrand, Johannesburg

²Division of Nephrology, Helen Joseph Hospital

³Division of Nephrology, Charlotte Maxeke Johannesburg Academic Hospital

Malcolm.Davies@wits.ac.za

Background: Late period antibody-mediated rejection

Banff Category	No features of humoral injury	Features of humoral injury	Total
IFTA/CAN	22 (59%)	15 (41%)	37
Rejection	81 (60%)	51 (40%)	132
Idiopathic	6 (86%)	1 (14%)	7
CNI	35 (81%)	8 (19%)	43
Reflux	12 (67%)	6 (33%)	18
Glomerular disease	6 (46%)	7 (54%)	13
Total	162	88 (35%)	250

Meier-Kriesche H-U et al. Am. J. Transplantation 2004;4:1289-1295

Saffer S. MMed thesis. Data presented at WCN 2015 and SATS 2015

Reference	Ν	% of biopsies with ABMR
Einecke G et al Am. J. Transplant 2009;9:2520-2531	27	C4d+ ABMR: 26% All ABMR: 63%
Regele H et al. J. Am. Soc. Nephrol 2002;13:2371-2380	213	C4d+ ABMR: 34%
Matas AJ et al. Am. J. Transplant 2010;10:315-323	240	C4d+ ABMR: 38% DSA+: 40%

Background: outcome of LPABMR

Saffer S. MMed thesis. Data presented at WCN 2015 and SATS 2015

Background: management of LPABMR

"Currently, there are no FDA-approved treatments for desensitization, and very few randomized controlled trials have been conducted in this area to date"

Target	Treatment	Remarks
Antibody removal and immunomodulation	Plasmapheresis IVIg IdeS	Efficacy may be limited in patients with high antibody titres. Effect may be inconsistent depending on DSA specificity Potential for massive proteinuria caused by IgG fragments
		DSA rebound occurs after Rx
B cells	Rituximab (antiCD20) Belimumab (BAFFi)	Added benefit to SOC (PLEX + IVIg) has not been demonstrated
T cells	ATG	T cells are important in B cell activation Recommended in ABMR with a TCMR component
	Corticosteroids Belatacept (costimulation block)	
Plasma cells	Bortezomib, Carlizomib (proteasome inhibitor) Tocilizumab (IL-6 Ra)	Added benefit to SOC has not been demonstrated, significant toxicitiy Under investigation
Complement	C1 esterase inhibitor C5 inhibitor (eculizumab)	Antibody-mediated damage is not limited to complement- dependent mechanisms; inhibition may not always be effective

Velidedeoglu E et al. Transplantation 2018;102:e257-e264

Background: potential effect of ATG in LPABMR

Deteix C et al. J Immunol 2010;184:5344-5351

Ma L et al. BMC Immunol 2015;16:56-68

Background: potential effects of ATG in LPABMR

Background: summary

- Antibody-mediated rejection is a leading cause of late period graft dysfunction and loss
- No consensus exists on the optimal treatment of LPABMR
- Physiologically, control of antibody-mediated injury requires:
 - Depletion of B-cell arm (direct / indirect) ? validity of targeting CD20+
 - Depletion of T-cell effector arm
- (r)ATG offers the possibility of depleting:
 - B-cell arm (directly via CD138 / CD20; indirectly via CD4)
 - T-cell arm (effector NK / CD8)

UNIVERSITY OF THE

IOHANNESBURG

• In addition to physiological considerations:

Therapy	Cost /mg*	Dose	Suggested dose**	Cost / dose†	Cost / course††
rATG	ZAR 49.70	1.5mg / kg	1.5 x 70 = 105mg	ZAR 5218.50	ZAR 36526.50
Rituximab	ZAR 69.23	375mg / m ²	375 x 1.7 = 637.50mg	ZAR 44134.13	ZAR 176536.52

*South African Medicine Price Registry accessed from http://mpr.gov.za 25/8/2019

**Suggested dose assumes average weight of 70kg and average body surface area of 1.7m²

+Cost / dose= (cost/mg) x (total dose)

++Cost / course = (cost / dose) x (4 for RTX, 7 for ATG)

Methods

- A retrospective subanalysis of the CMJAH LPABMR cohort was conducted
 - Patients receiving PLEX + IVIg followed by depletion therapy (RTX / ATG) were included (n = 34)
- Baseline characteristics were compared between RTX and ATG treatment arms
 - Logistic regression was used to retrospectively compare potential indications for ATG prescription over RTX
- Clinical remission (stabilization of graft function) was compared between RTX and ATG groups

Results: prescription of ATG vs RTX

	RTX (n=23, 67.6%)	ATG (n = 11, 32.3%)	р
Number of detected specificities			
HLA-A	1 (0-4)*	0 (0 – 8)	0.837
HLA-B	0 (0 – 2)	0 (0 - 1)	0.490
HLA-DQA	0 (0 - 1)	1 (0 - 6)	0.447
HLA-DQB	5 (2 – 7)	5 (0 – 7)	0.837
MFI of detected specificities			
HLA-A	0 (0 – 3495)	0 (0 – 2882)	0.817
HLA-B	0 (0 – 1132)	0 (0 – 1085)	0.585
HLA-DQA	0 (0 – 15740)	1988 (0 – 16312)	0.581
HLA-DQB	6995 (1564 – 18749)	3042 (0 – 16312)	0.535
Graft age at diagnosis (months)	177 (136 – 330)	56.8 (30.1 – 170.03)	0.188
Creatinine at diagnosis (mmol/L)	106.3 (74.7 – 177.8)	358 (271 – 454)	0.003
IFTA grade	0: 14%	0: 13%	0.359**
	1: 57%	1: 38%	
	2: 29%	2: 38%	
	3: 0%	3: 13%	
i-score	0: 38%	0: 25%	0.233**
	1: 33%	1: 13%	
	2: 14%	2: 50%	
	3: 14%	3: 13%	

Results: factors determining creatinine

Predictor	b	SE b	F	df	р
cg-score Dx Bx: 0	-0.0304	0.1938	0.2682	3	0.876
1	-0.1382	0.2133			0.520
2	0.0387	0.2237			0.863
IFTA grade Dx Bx: 0	0.0157	0.1391	0.3915	3	0.911
1	-0.0095	0.1593			0.952
2	-0.1707	0.1613			0.296
i-score Dx Bx: 0	-0.1988	0.1541	2.8015	3	0.203
1	-0.1822	0.1576			0.254
2	0.4293	0.1567			0.008

Results: factors determining ATG prescription

Predictor	β	SE β	Wald's χ^2	df	р
Creatinine at Dx	0.0033	0.0022	2.1023	1	0.147
DQ MFI	-0.0000	0.00004	0.0001	1	0.991
Mixed rejection Dx Bx	0.6118	0.3339	3.3577	1	0.067
cg-score Dx Bx: 0	-9.2667	107.0752	0.0075	3	0.931
1	-15.2766	234.7290	0.0042		0.948
2	12.9107	132.1529	0.0264		0.922
IFTA grade Dx Bx: 0	1.6033	0.8868	3.2691	3	0.071
1	-1.1792	0.6673	3.1228		0.077
2	-0.2972	0.7402	0.1611		0.688
i-score Dx Bx: 0	-0.0054	0.5384	0.0001	3	0.992
1	-1.421	0.8498	2.799		0.094
2	1.551	0.772	4.030		0.044

Results: poorer outcomes with ATG

Predictor	β	SE β	Wald's χ^2	df	р	HR (95% CI)
RTX	-0.5007	0.3015	2.758	1	0.097	0.367 (0.113 – 1.198)
ATG	0.4770	0.4600	1.4350	1	0.231	3.250 (0.591 – 22.825)

Results: i-score and outcome

Results: poorer outcomes with ATG

Predictor	β	SE β	Wald's χ ²	р	Hazard ratio (95% CI)
Rituxmab	-0.3476	0.2855	1.4826	0.2233	1.0781 (0.4044 – 2.8742)
ATG	0.7705	0.3226	5.7032	0.0169	3.2980 (1.0920 – 9.9607)

Results: DSA response to ATG

Discussion: RTX is of dubious benefit in ABMR

Discussion: evidence for ATG in ABMR is poor

Discussion: ATG may precipitate ABMR

Colovai AI et al. Human Immunol 2005;66:501-512

Discussion: ATG may worsen loss of tolerance

Wing JB et al. Immunity 2014;41:1013-1025

Conclusions

- ABMR is an important cause of late period graft dysfunction and loss
- Consensus on treatment of LPABMR is lacking
- Despite initial enthusiasm current data does not support the efficacy of RTX in the treatment of LPABMR
- i-score is predictive of graft loss; ATG has been suggested as a potential therapy in LPABMR with significant interstitial infiltrate / mixed rejection
- Evaluation of the CMJAH cohort suggests that ATG may accelerate graft loss in LPABMR
- Loss of Treg-mediated dampening of long-lived plasma cell clones responsible for DSA production may underlie this observation

Acknowledgements

- Dr F Khan, Dr S Saffer
- Dr P Mosiane, Prof S Goetsch
- Ms C Worsely, Dr M Suchard

